Logistic function (Sigmoid)DescriptionIn the context of artificial neural networks, the Logistic function is an activation function defined as:
from matplotlib import pyplot as plt
import numpy as np
def sigmoid_forward(x):
return 1 / (1 + np.exp(-x))
x = np.arange(-7,7)
y = sigmoid_forward(x)
plt.style.use('fivethirtyeight')
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title("Plot of the Logistic function")
plt.show()
tf.sigmoid(
x,
name=None
)
Pytorch form of Logistic function:
class torch.nn.Sigmoid Forward propagation EXAMPLE
/* ANSI C89, C99, C11 compliance */
/* The following example shows the usage of Logistic function forward propagation. */
#include <stdio.h>
#include <math.h>
float logistic_forward(float x){
return 1.0f / (1.0f + (float)exp(-x));
}
int main() {
float r_x, r_y;
r_x = 0.1f;
r_y = logistic_forward(r_x);
printf("Logistic function forward propagation for value x: %f\n", r_y);
return 0;
}
Backward propagation EXAMPLE
/* ANSI C89, C99, C11 compliance */
/* The following example shows the usage of Logistic function backward propagation. */
#include <stdio.h>
#include <math.h>
float logistic_backward(float x){
float r_log = 1.0f / (1.0f + (float)exp(-x));
return r_log * (1.0f - r_log);
}
int main() {
float r_x, r_y;
r_x = 0.1f;
r_y = logistic_backward(r_x);
printf("Logistic function backward propagation for value x: %f\n", r_y);
return 0;
}
REFERENCES: 0. LeCun, Y.; Bottou, L.; Orr, G.; Muller, K. (1998). Orr, G.; Muller, K., eds. Efficient BackProp. |